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Statistics for Data Science

Statistics - methods for evaluating hypotheses in the light of empirical facts
(Stanford Encyclopedia of Philosophy, 2014)

Data Science - a field focused on using statistical, scientific, and computational 
techniques to gain insights from data. 

Approximately equal:
  Data Science ≈ Data Mining ≈ Analytics ≈ Quantitative Science

Highly Related
  Data Science ,  Big Data ,   Machine Learning ,  Artificial Intelligence
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Statistical methods for gaining knowledge and insights from data. 

-- designed for those already proficient in programming (i.e. computing)
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Statistics for Data Science

Statistical methods for gaining knowledge and insights from data. 

-- designed for those already proficient in programming (i.e. computing)

A pathway to knowledge about…
… what was,    (past)
… what is,       (present)
… what is likely (future)
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Why?!?

Jobs

Decisions

Truth / Meaning in Life
The answer to the "ultimate question of 
life, the universe, and everything" (Adams)



In other words, so you can go on Twitter and say

"The data say …"

"I did my research."

… and change no one's mind but at least understand it better yourself. 
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Course Website

https://www3.cs.stonybrook.edu/~has/CSE357/index.html
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What is Probability?
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What is Probability?

Examples

(1) outcome of flipping a coin 

(2) amount of snowfall

(3) mentioning "happy"

(4) mentioning "happy" a lot
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What is Probability?

The chance that something will happen. 

Given infinite observations of an event, the proportion of observations where a 

given outcome happens. 

Strength of belief that something is true.
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What is Probability?

The chance that something will happen. 

Given infinite observations of an event, the proportion of observations where a 

given outcome happens. 

Strength of belief that something is true.

“Mathematical language for quantifying uncertainty” - Wasserman
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Probability (review)

Ω : Sample Space, set of all outcomes of a random experiment

A : Event (A ⊆ Ω), collection of possible outcomes of an experiment

P(A): Probability of event A, P is a function: events→ℝ
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(1) outcome of flipping a coin 

(2) amount of snowfall

(3) mentioning "happy"

(4) mentioning "happy" a lot



Probability (review)

Some Properties:

If B ⊆ A then P(A) ≥ P(B) 

P(A ⋃ B) ≤ P(A) + P(B)

P(A ⋂ B) ≤ min(P(A), P(B))

P(¬A) = P(Ω / A) = 1 - P(A)

/ is set difference

P(A ⋂ B) will be notated as P(A, B)
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Examples

(1) outcome of flipping a coin 

(2) amount of snowfall

(3) mentioning "happy"

(4) mentioning "happy" a lot



Independence

Independence

Two Events: A and B

Does knowing something about A tell us whether B happens (and vice versa)?
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Does dependence 
imply causality?



Disjoint Sets vs. Independent Events

Independence: Two events, A and B are independence iff P(A,B) = P(A)P(B)

Disjoint Sets:  If two events, A and B, come from disjoint sets, then 

P(A,B) = 0
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Disjoint Sets vs. Independent Events

Independence: … iff P(A,B) = P(A)P(B)

Disjoint Sets:  If two events, A and B, come from disjoint sets, then 

P(A,B) = 0

Does independence imply disjoint? 
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Disjoint Sets vs. Independent Events

Independence: … iff P(A,B) = P(A)P(B)
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Disjoint Sets vs. Independent Events

Independence: … iff P(A,B) = P(A)P(B)

Disjoint Sets:  If two events, A and B, come from disjoint sets, then 

P(A,B) = 0

Does independence imply disjoint? No

  Proof: A counterexample: A: flip of fair coin A is heads, 

 B: flip of fair boin B is heads; 

                                         independence tell us P(A)P(B) = P(A,B) = .25 

but disjoint tells us P(A, B) = 0
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Probability (Review)

Conditional Probability

                   P(A, B)

P(A|B) =  -------------

                     P(B)
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H: mention “happy” in message, m
B: mention “birthday” in message, m

P(H) = .01         P(B) =.001    P(H, B) = .0005
                         P(H|B) = ??

 



Probability (Review)
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H: mention “happy” in message, m
B: mention “birthday” in message, m

P(H) = .01         P(B) =.001    P(H, B) = .0005
                         P(H|B) = .50

H1: first flip of a fair coin is heads
H2: second flip of the same coin is heads
P(H2) = 0.5 P(H1) = 0.5    P(H2, H1) = 0.25

P(H2|H1) = 0.5



Probability (Review)

Conditional Probability

                   P(A, B)

P(A|B) =  -------------

                     P(B)

Two events, A and B, are independent iff  P(A, B) = P(A)P(B)

P(A, B) = P(A)P(B) iff P(A|B) = P(A)
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Probability (Review)

Conditional Probability

                   P(A, B)

P(A|B) =  -------------

                     P(B)

Two events, A and B, are independent iff  P(A, B) = P(A)P(B)

P(A, B) = P(A)P(B) iff P(A|B) = P(A)

Interpretation of Independence: 

Observing B has no effect on probability of A. 38

H1: first flip of a fair coin is heads
H2: second flip of the same coin is heads
P(H2) = 0.5 P(H1) = 0.5    P(H2, H1) = 0.25

P(H2|H1) = 0.5



Why Probability?
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Why Probability?

A formality to make sense of the world. 

(1) To quantify uncertainty

Should we believe something or not? Is it a meaningful difference?

(2) To be able to generalize from one situation or point in time to another. 

Can we rely on some information? What is the chance Y happens?

(3) To organize data into meaningful groups or “dimensions”

Where does X belong? What words are similar to X?
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Probabilities over >2 events...

Independence: 

A
1
, A

2
, …, A

n 
are independent iff 

41



Probabilities over >2 events...

Independence: 

A
1
, A

2
, …, A

n 
are independent iff 

Conditional Probability:

  

42



Probabilities over >2 events...

Independence: 

A
1
, A

2
, …, A

n 
are independent iff 

Conditional Probability:

      just think of multiple events happening as a single event: 

         Z    =   A1,, A2,… , Am-1     =    A1,⋂ A2⋂ … ⋂ Am-1     then   P(Z|An) 43



Conditional Probabilities are Fundamental to Data Science

for example

Machine Learning: Most modern deep learning techniques try to estimate

P(outcome | data)

Causal inference: Does treatment cause outcome?

P(outcome | treatment) =/= P(outcome) *

*also requires random sampling of treatment conditions
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Conditional Independence

A and B are conditionally independent, given C, IFF

P(A, B | C) = P(A|C)P(B|C)

Equivalently, P(A|B,C) = P(A|C)

Interpretation: Once we know C, then B doesn’t tell us anything useful about A.
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Bayes Theorem - Lite

GOAL: Relate  (1) P(A|B)  to    (2) P(B|A)
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Why?

We often want to know P(A|B) but we 
are only given P(B|A) and P(A). 

Example: You want to know if an email is 
likely spam given a word appearing in it: 
P(spam | word). However, you only have a 
dataset of words and spam: P(word | spam) 
and you can look up the frequency of spam 
emails in general to get P(spam) as well as the  
frequency of "word" in general for P(word).



Bayes Theorem - Heavy (with multiple events partitioning Ω)

GOAL: Relate P(A
i
|B) to P(B|A

i
), 

for all i = 1 ... k, where A
1
 ... A

k
 partition Ω
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First: Law of Total Probability
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When both of these conditions are 
true, we say "A1, …, Ak partition Ω"



First: Law of Total Probability

GOAL: Relate P(A
i
|B) to P(B|A

i
),

for all i = 1 ... k, where A
1
 ... A

k
 partition Ω

partition: P(A
1
 U A

2
 … U A

k
) = Ω

                   P(A
i
, A

j
) = 0, for all i ≠ j

law of total probability: If A
1
 ... A

k
 partition Ω, 

   then for any event, B:
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Law of Total Probability and Bayes Theorem

GOAL: Relate P(A
i
|B) to P(B|A

i
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for all i = 1 ... k, where A
1
 ... A

k
 partition Ω

Let’s try:
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Law of Total Probability and Bayes Theorem

GOAL: Relate P(A
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(1) P(Ai|B) = P(Ai,B) / P(B)

(2) P(Ai,B) / P(B) = P(B|Ai) P(Ai) / P(B),  by multiplication rule
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Law of Total Probability

P(A,B) = P(B|A)P(A) 



Law of Total Probability and Bayes Theorem
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but in practice, we might not know P(B)
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GOAL: Relate P(A
i
|B) to P(B|A

i
), 

for all i = 1 ... k, where A
1
 ... A

k
 partition Ω

Let’s try:

(1) P(Ai|B) = P(Ai,B) / P(B)

(2) P(Ai,B) / P(B) = P(B|Ai) P(Ai) / P(B),  by multiplication rule
but in practice, we might not know P(B)

(3) P(B|Ai) P(Ai) / P(B) = P(B|Ai) P(Ai) / (                             ), by law of total 
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Bayes Rule, in practice

Example: 

https://www.youtube.com/watch?v=R13BD8qKeTg

https://www.youtube.com/watch?v=R13BD8qKeTg


Probability Review:

● What constitutes a probability measure?
● Independence
● Conditional probability
● Conditional independence
● How to derive Bayes Theorem
● Multiplication Rule
● Partition of Sample Space
● Law of Total Probability
● Bayes Theorem in Practice 


